einer Reflexverbreiterung führen können, wollen wir diese Messgenauigkeit für die Bestimmung der Reflexmaxima mit nur 0,04 mm annehmen. Damit wird

$$dv''' = \frac{0.04}{\pi/2 R} \sim 5 \times 10^{-4} .$$

Alle diese Einzelfehler addiert ergeben einen relativen maximalen Fehler

$$\Delta v = \Delta v' + \Delta v'' + \Delta v''' = 1,2 \times 10^{-3}.$$

Der relative Fehler für die Genauigkeit der Bestimmung der zu messenden Translationsperiode t(u, v, w)ist damit

$$\left[\frac{\Delta t}{t}\right] \simeq 1.2 \times 10^{-3} \operatorname{ctg} \nu \,.$$

Speziell für $v = 70^{\circ}$

$$\left[\frac{\Delta t}{t}\right]_{\nu=70^{\circ}} \simeq 5 \times 10^{-4} \, .$$

Es zeigt sich also, dass bei Einhaltung der angegebenen mechanischen Genauigkeit des gesamten Kameraaufbaues, bei geeigneter Grösse und genauer Justierung des Kristalls und bei genauer Vermessung der Linien eine hohe Genauigkeit mit dieser Methode erreichbar ist. Die Ergebnisse der Erprobung des noch nicht mit der erforderlichen Genauigkeit gearbeiteten Versuchsgerätes nach Fig. 3 stehen mit den obigen Ausführungen im Einklang.

Herrn Dr Kutschabsky danken wir sehr für kritische Diskussionen und Hinweise.

Acta Cryst. (1971). B27, 916

Kristallstruktur von Ni₃₁Si₁₂

VON K. FRANK* UND K. SCHUBERT

Max-Planck-Institut für Metallforschung (Institut für Metallkunde), Stuttgart, Deutschland

(Eingegangen am 25. März 1970)

The phase Ni₃₁Si₁₂ crystallizes in the space group P321 and has the lattice constants $a=6,67_{1\pm1}$, $c=12,28_{8\pm2}$ Å. It may be considered as a member of the NiAs family even more filled than the Ni₂In structure. The stacking sequence of the layers parallel to the basic plane is discussed in the light of the three-correlation model of inorganic phases. Several related structures are shown to belong to the same family, and to obey analogous rules.

Vorbemerkung

Die Phasen Ni₅As₂, Ni₃Cu₂Ge₂, Pd₅Sb₂, Ni₅Si₂, Mn₅Ge₂(h), Pd₅As₂ und Ni₅Ge₂(h) sind isotyp oder homöotyp (Burkhardt & Schubert, 1959; Saini, Calvert & Taylor, 1964; Bälz, 1969). Im Rahmen unserer Studien von Varianten der NiAs Struktur (Ellner, Bhan & Schubert, 1969; Bälz & Schubert 1969) analysierten wir zunächst die niedrigst symmetrische Phase Ni₅Si₂. Die weiteren Phasen sind in Arbeit.

Beobachtungen zur Konstitution

Eine Legierung Ni_{73,5}Si_{26,5} wurde aus Elementen der Reinheit 99,9% im Bogenofen in Kupferkokillen unter Argon erschmolzen und zeigte nach Warmbehandlung des Pulvers (65h 500°C bzw. 40h 700°C bzw. 20h 900°C) neben etwa 30% Ni₃Si (Cu₃Au = $C^{1,3}$ Typ) die Linien einer Phase, die seither Ni₅Si₂ genannt wurde, aber entsprechend vorliegender Arbeit Ni₃₁Si₁₂ genannt werden möge; nach Warmbehandlung (3h 1100°C) war $C^{1,3}$ verschwunden und es trat die Hochtemperaturphase

Ni₃Si (h₁) ins Gleichgewicht mit der Struktur von Ni₃₁Si₁₂ in Übereinstimmung mit den in der Literatur (Hansen & Anderko, 1958) mitgeteilten Angaben. Eine Legierung Ni_{72,5}Si_{27,5} zeigte nach der Warmbehandlung (Pulver 40h 700 °C) noch ein wenig $C^{1,3}$, war aber nach (3h 1100°C) einphasig vom Ni₃₁Si₁₂ Typ. Legierung Ni_{72,0}Si_{28,0} (65h 500°C bzw. 40h 700°C) zeigte stark die Unterstrukturlinien von Ni31Si12, jedoch war das System der Überstrukturlinien so stark geändert, dass das Vorliegen einer neuen seither unbekannten Phase von ganz ähnlicher Zusammensetzung wie Ni₃₁Si₁₂ angenommen werden muss. Wegen dieser Befunde kann man hier von einem Bündel benachbarter Phasen bei Ni₅Si₂ oder kurz von einem Phasenbündel Ni₅Si₂ sprechen. Das Liniensystem der neuen Phase gestattet den Schluss, dass die Phase, die γ_1 genannt werden möge, zu Ni₃₁Si₁₂ strukturell eng verwandt ist. Ausser der Variante γ_1 der Ni₃₁Si₁₂ Struktur waren schwach die Linien von Ni₂Si(Ni₂Si-Typ) enthalten. Nach Warmbehandlung (20h 900°C) war das System der Überstrukturlinien nochmals geändert, sodass eine zweite Variante γ_2 vorhanden sein muss; allerdings waren deren charakteristische Linien im Gegensatz zu denen von γ_1 nicht scharf geworden. Nach Warmbehandlung

^{*} Teil einer Dissertation von K. Frank.

(3h 1100 °C) war der Anteil an Ni₂Si verschwunden; merkwürdigerweise trat wieder das Liniensystem γ_1 auf, was wohl so zu erklären ist, dass die Abschreckbedingung die Einstellung von γ_1 gestattete. In Legierung Ni_{71,5}Si_{28,5} war auch nach (3h 1100 °C) die Ni₂Si Phase anwesend.

Aus den mitgeteilten Beobachtungen muss man schliessen, dass das Konzentrationsintervall, in dem keine nicht zu dem Phasenbündel Ni₅Si₂ gehörige Phase vorhanden ist, bei höheren Temperaturen verbreitert ist. - Von Legierung Ni71,5Si28,5 wurde eine Differentialthermoanalyse gemacht: ausser den schon im Phasendiagram (Hansen & Anderko, 1958) zum Ausdruck kommenden Effekten wurde ein neuer sehr schwacher und Breiter Effekt gefunden bei 860°C. Man darf vermuten, dass dieser Effekt mit der Bildung von γ_2 aus γ_1 (Aufheizung) bzw. γ_1 aus γ_2 (Abkühlung) zusammenhängt. Bei Legierungen aus dem Feld des Ni₅Si₂ Phasenbündels wurde auch im Anschliff ein Effekt beobachtet: nach Warmbehandlung (5h 500°C) war das Gefüge bei Si-ärmeren Legierungen nach Ätzung mit Adlerschem Ätzmittel nicht rekristallisiert, nach Warm-

Fig. 1. Kristallstruktur von Ni₃₁Si₁₂: P 321, $a=6,67_{1\pm1}$, $c=12,28_{8\pm2}$ Å c/a=1,842. 1Ni(b) ,0,0,5; 2Ni(c) ,0,0,095; 2×2Ni(d) ,333,667,072; ,333,667,567; 4×6Ni(g) ,413,079,096; ,664,962,198; ,358,034,306; ,627,936,405; 2Si(c),0,0,287; 2×2Si(d),333,667,275; ,333,667,774; 3Si(e),682,0,0; 3Si(f),349,0,5.

behandlung (70h 830°C) war das Gefüge jedoch ganz rekristallisiert und zeigte Subkornbildung; auch dies könnte mit der Existenz von γ_2 zusammenhängen. Bei Si-reicheren Legierungen war der Schliff nach (70h 830°C) fleckig, nach 70h 700°C jedoch nicht; hier war offenbar die Umwandlung vollständig.

Strukturuntersuchung

Ein Einkristall der Phase Ni31Si12 wurde durch Zerschlagen gewonnen aus einer Legierung Ni_{72,5}Si_{27,5} (Guss), die mikroskopisch homogen war. Das Granulat wurde mit (1h 1000°C) unter Vakuum entspannt. Ein Bruchstück der Grösse $0.1 \times 0.03 \times 0.02$ mm (in [1]0] Richtung ausgedehnt) bestätigte die hexagonale Translationsgruppe von Pilström (1961) und auch das Diffraktions symbol $\overline{3}mP$... von Saini *et al.* (1964). Die Intensitäten wurden nach der Vierfilm-Methode mit Weissenbergaufnahmen (0kl), (1kl), (2kl), (3kl) gesammelt. Da die Transmissionslänge von der Grösse 0.02 mm war, wurde die Absorption vernachlässigt. Die dreidimensionale Pattersonfunktion zeigte einen Aufbau aus 10 zur Basis parallelen Schichten und eine NiAs-Verwandtschaft der Atomlage. Diese Angaben liessen sich zum Ausdruck bringen in der Raumgruppe D_1^2 P321. Die Untersuchung verschiedener Strukturvariaten führte auf einen *R*-Wert $\sum ||F_o| - |F_c|| / \sum |F_o| = 25 \%$. Eine Fouriersynthese der $|F_o|$ mit den berechneten Phasen exp $2\pi i \alpha$ zeigte, dass der anfänglich zugrunde gelegte Zellinhalt Ni₃₀Si₁₂ zu verbessern war in Ni₃₁Si₁₂ durch Beifügung eines Ni in Lage (b). Hierdurch wurde die Kurve des mittleren Atomvolumens der Ni-Si Phasen in Funktion der Zusammensetzung geglättet, und R sank auf 20%. Weitere zusätzliche Atome wurden nicht gefunden. Eine Verfeinerung der individuellen isotropen Temperaturfaktoren ergab schliesslich R =13% für alle Schichtlinien, wobei die nicht beobach-

Tabelle 1. Struktur von Ni₃₁Si₁₂

Experi	ment: Ni _{72,} Weis	Ni _{72.5} Si _{27.5} (Kristall 1h bei 1000 °C getempert) Weissenbergaufnahmen mit Cu $K\alpha$, Absorption					
Strukti	ur: $Ni_{31}S$ c/a =	$Si_{12}, D_3^2 P321$ 1,842	gt. $a = 6,67_{1\pm 1}, c = 12,28_{8\pm 2}$ Å				
Nr.	Atom	x	у	Ζ	$B(Å^2)$		
1	1 Ni(b)	0,0	0,0	0.5	3.00		
2	2Ni(c)	0,0	0,0	0.095_{1+8}	1.88		
3	2Ni(d)	0,3333	0,6667	$0.071_{7\pm8}$	1.66		
4	2Ni(d)	0,3333	0,6667	0,566718	1,44		
5	6Ni(g)	$0,41_{3\pm 2}$	$0,07_{9\pm 2}$	$0,096_{4\pm 5}$	1,66		
6	6Ni(g)	$0,66_{4\pm 2}$	$0,96_{2\pm 2}$	$0,198_{3+5}$	1.56		
7	6Ni(g)	$0,35_{8\pm 2}$	$0,03_{4\pm 2}$	$0,306_{5\pm5}$	1,40		
8	6Ni(g)	$0,62_{7\pm 2}$	$0.93_{6\pm 2}$	$0,404_{6+5}$	1,59		
1	2Si(c)	0,0	0,0	0.28_{7+2}	1.02		
2	2Si(d)	0,333	0,667	0.275+2	0.28		
3	2Si(d)	0,333	0,667	0.77_{4+2}	0.01		
4	3Si(e)	$0,68_{2\pm 3}$	0,0	0.0	1.32		
5	3Si(f)	$0,34_{9\pm 3}$	0,0	0,5	0		

Verarbeitung: Nicht beobachtete Reflexe wurden zur Vollmatrix-Verfeinerung mit $I_{\min}/2$ angenommen. $\sum ||F_o| - |F_c||/\sum |F_o| = 0,13.$

teten Reflexe mit $\frac{1}{2}$ der minimalen beobachteten Intensität mitgezählt worden waren. Der niedrige B-Wert einiger Si könnte vielleicht damit zusammenhängen, dass die Valenzelektronen der Si durch ihre Ortskorrelation weit ins Gitter verstreut werden, so dass das verbleibende Atom stark konzentriert erscheint. Das Endergebnis der Verfeinerung ist in Tabelle 1 geschildert, und die $|F_o|$ und F_c sind in Tabelle 2 gegenübergestellt. Einige Atomabstände sind in Tabelle 3 aufgeführt, sie sind alle oberhalb des kleinsten von Pilström (1961) bei der Strukturanalyse von $Ni_3Si_2(r)$ gefundenen Abstands d(Ni,Si) = 2,18 Å. Eine Pulveraufnahme der Phase findet man bei Saini, et al. (1964).

Diskussion

Die erhaltene Struktur ist in Fig. 1 dargestellt. Man erkennt, dass die Zahl lcA der Atomschichten parallel zur hexagonalen Basis je c Strecke gleich 10 ist. Die Si Atome liegen in 4 Schichten mit den Koordinaten (1) z=0,00 (2)z=0,23 bzw. 0,27 bzw. 0,29 (3) z=0,50(4) z = 0.71 bzw. 0.73 bzw. 0.77. Man kann also sagen, dass die Si-Schichten genähert äquidistant sind. Bezeichnet man die Punkte, 0, 0, 0; 0,33, 0, 0; 0,67, 0, 0 in der Basis als A,B,C, so lautet die Stapelfolge der Si-Schichten CABA. Diese Stapelung ist zu vergleichen mit der Stapelfolge AB der B-Atome (As) in der NiAs Struktur. Man kann also in erweiterter Bedeutung die

Tabelle 2. Beobachtete und berechnete Strukturamplituden (Phase $100\alpha/2\pi$)

38324670 80 m 7 m 500 p 7 m 7 5 5 m 7 5 7 5 2 7 7 5 0 m 7 m 7 5 5 m 7 5 7 5 7 5 7 5 7 5 7 5 7	3 17 28 4 6 9 5 3 11 27 6 5 8 2 1 4 9 7 7 5 4 1 3 4 5 7 5 5 7 10 7 5 7 5 7 5 10 7 10 7 10 7	
	47 214 877 227 297 297 17 27 27 77 37 37 37 17 27 45 46 38 27 77 18 47 19 47 19 47 77 37 58 37 37 19 47 19 19 19 19 19 19 19 19 19 19 19 19 19	
4 39 4 57 A 68 N / JR 24 N A 14 6 7 M 24 6 W D B B A 4 4 4 4 4 7 B 4 4 4 8 M 7 7 N 13 15 23 33 34 H 17 7 4	577 4 117 3° 4 54 50 5 55 55 55 55 55 55 55 55 55 55 55 5	
15 66 175 35 77 1244 27 65 125 00 83 13 35 70 71 11 8 66 54 65 55 55 77 1244 27 65 125 78 13 13 15 72 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	5 2027 20 8 9 24 0 10 7 45 4 10 13 22 11 11 12 9 45 8 11 22 33 700 15 55 9 27 17 35 52 36 14 93 76 80 37 45 54 10 13 12 21 11 11 29 45 8 11 22 33 700 15 55 9 27 17 35 52 36 14 93 76 80 37 75 35 20 15 76 12 35 35 10 15 76 10 10 10 10 10 10 10 10 10 10 10 10 10	
2222 222 222 233333333333333334444444444	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	
214433 43244473500 310 0140 9114 8011 13 97 24464755074113550 8315678478787878 01 0565530 95055555555555555555555555555555555	7376557284776496687.41244753771277772474747426545512997.415457472642984	
1349 1341 125 134 132 132 1 324 1 324 1 323 1 323 1 324 1 349 9 4 4 30 1 1 22 2 2 2 3 3 4 9 4 1 9 5 1 7 9 6 1 2	7 3 3 6 5 17 4 3 1 9 0 6 3 7 0 6 7 1 7 0 4 8 2 4 3 4 4 6 4 3 6 1 2 6 4 6 1 6 6 5 1 2 4 1 1 1 5 5 2 4 6 7 1 1 4 4 5	
5 75 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7		
888.1841.484.184.184.187.187.187.187.187.187.187.187.187.184.184.184.184.184.184.184.184.184.184	28-8 62145;7714;1473 802357;12243255 443632576,85685656565656565666468856577678648856577678648856577678648856577677864185565577677864185555557767786418555555776778641855555776778641855555577677864185555557767786418555555575778785555757778585557577878555575778641855555777878555577787855557778785555777878555577787855557778785555777878555577787855557778785557778785555777878555577787855557778561855557778785555777785855577778585557778785555777878555577778585555777878555555	
1381413226 1381413226 130662133344339 1322649733642127336477335119 1400213902174523364177335119 14722288	0477884484772211105775714213546752452325266878720422011211392845766678759081	
╸╬┙╬╬┓┵╹┉╹╖╸┑┑╸┑┑┑┥┑╸╸┑┑┑┑┑┑┑┑┑┑┑╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸	יין אין אין אין אין אין אין אין אין אין	
21-77-321-62-62-62-72-32-62-62-62-62-62-62-62-62-62-62-62-62-62	14114552355125125747809902571459405103341329573453148218464953321145992973541837 195855655501911099025224490780769293142223714828797257423872373557473	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0730463207683273543320553471293873314732237736333334144812973441225	407 83 112 49 22 11 9 8 8 9 8 8 7 1 25 4 9 8 3 11 8 5 8 7 8 3 8 8 8 9 19 2 5 7 13 8 3 8 8 9 19 2 5 7 1 3 8 19 1 5 7 1 5 7 1 2 6	19,15 107 107 107 107 107 107 107 107 107 107
	٩٣ ٩٦ ٩٦ ٥٩ ١٩١ ١١٩ ٥٦ ٩٩ ٥٦ ٩٩ ١٩٩ ١٩٩ ٩٩ ٩٩ ٩٩ ٩٩ ٩٩ ٩٩ ٩٩ ٩٩ ٩٩ ٩	-7.49 -1.10
	4104062717289918555773107052878918193376478928983512133887978918255773107055828918127892882891721070698279233388797976982722333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222333889981222233388998122233388998122233388998122233388998122233388998122233388998122233388998122233388998122233388998122233389988123338998981222333889981222333889981222333889988122333888889898122333889988988898989889898	19 63 23 19 114 26 50 27 58 97 58 10 74 18 67 37 74 18 67 37 74 18 67 37 74 18 67 14 19 55 51 14 19 55 51 14 19 55 51 14 19 57 58 14 15 57 58 14 15 57 58 14 59 59 59 51 59 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50
7 24 24 77 72 25 18 3 4 13 11 8 5 77 22 48 55 22 11 77 14 33 57 53 38 68 21 28 68 12 71 31 22 14 32 44 22 33 18 44 9	42497111214891295838924866429977424113141493939491422213723564468837822506	12 326 753 142 167 55 258 255 258 255 255 255 255 255 255
۱۷۵۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1301234567898101212345 122228282882845555555 12222828288285555555555555555555

Struktur des Ni₃₁Si₁₂ als Stapelungs- und Auffüllungsvariante der NiAs Struktur ansehen. Diese Zuordnung wird auch dadurch bestätigt, dass das Phasenbündel Ni₅Si₂ bei höheren Temperaturen mit der Phase Ni₃Si₂-(h) vom NiAs Typ im Gleichgewicht ist. Allerdings ist die höchst aufgefüllte bekannte Abart der NiAs Struktur das Ni₂In. In der Struktur des Ni₂In lautet die Schichtenfolge in Richtung der c Achse Ni, (NiIn) Ni, (NiIn). Danach sollte man für eine zu NiAs homöotype Struktur mit 4 B-Atomschichten (hier Si Schichten) 8 Atomschichten parallel zur Basisebene erwarten. Im vorliegenden Falle befinden sich jedoch 10 Schichten in der Zelle. Es sind also in gewisser Weise zusätzliche T-Atomschichten (hier Ni-Schichten) in die Struktur eingelagert. Diese hier erstmalig beobachtete strukturelle Möglichkeit legt nahe, T-Schichten und B-Schichten miteinander zu identifizieren. In diesem Falle erhält man für die NiAs Struktur eindeutig das Stapelsymbol ABAC. Im Falle einer aufgefüllten NiAs-Variante verliert dieses Stapelsymbol seine Eindeutigkeit; man kann diese jedoch aufrecht erhalten, wenn man verabredet, dass die T-Atome massgebend für den Charakter einer gestapelten Schicht sein sollen. Nach dieser Verabredung hat auch der Ni₂In Typ das Stapelsymbol ABAC. Für die Ni₃₁Si₁₂ Struktur ergibt sich nun das Stapelsymbol $ABCBCACBCB = (chchh)^2$. Dieses Stapelsymbol wurde früher schon bei dichten Kugelpackungen gefunden (Burkhardt & Schubert, 1965). Es wurde gezeigt, dass diese Stapelfolge energetisch erklärt werden kann, wenn man annimmt, dass die Zahl der Elektronenschichten senkrecht zur c Richtung in der Ortskorrelation der Valenzelektronen $l_{cE} = 13$ ist, sodass $l_{cE}/$ $l_{cA} = 1,30$ wird (Schubert, 1968*a*). Nun interpoliert sich aus den für Ni₃Si, NiSi₂ und Si bekannten Ortskorrelationsvorschlägen (Schubert, 1964) der Valenzelektronenabstand für Ni₃₁Si₁₂ zu etwa 2,25 Å. Damit kommt für Ni31Si12 der Vorschlag für die Ortskorrelation der Valenzelektronen $a/3 = d_{A1} l_c = 6,7$, welcher die Zahl der Plätze je Elementarzelle $Z_P = 60$ liefert. Dieser Wert ist verträglich mit dem experimentellen Zelleninhalt, wenn man annimmt, dass Ni etwa 0,4 Valenzelektronen beisteuert (vgl. Schubert, 1964, S. 62); bei den zu Ni₃₁Si₁₂ homöotypen Phasen wie Ni₅As₂, Pd₅Sb₂ usw. braucht diese Annahme nicht gemacht werden. Der Ortskorrelationsvorschlag für die Valenzelektronen erklärt die Tatsache der gleichmässigen Verteilung der Si in der Struktur, und die gute Kommensurabilität in a-Richtung erklärt die Aufrechterhaltung der hexagonalen Si-Netze parallel zur Basis der NiAs Struktur des Ni₃Si₂(h). Die Rasterzahl le der Valenzelektronenkorrelation ist gerade etwa $l_{cE}/2$. Daraus kann man die Annahme herleiten, dass die Stapelfolge in Ni₃₁Si₁₂ durch die Rumpfelektronenkorrelation verursacht ist. In der Tat ergibt sich der sinnvolle Vorschlag $a/6 = d_{C11} l_c = 12,8 \simeq 13$, der recht genau die oben genannte charakteristische Zahl 1,30 liefert. Die Wahrscheinlichkeit einer C11-Korrelation für die d Elektronen wurde früher begründet (Schubert, 1968b). Für die NiAs Struktur (Stapelsymbol ABAC) soll nach Schubert (1968a) $l_{cE}/l_{cA} = \frac{5}{4} = 1,25$ werden, was, wie man leicht erkennt, genähert der Fall ist. Man kann also die besprochenen Phasen als Beispiel für das Zweikorre-

Tabelle	3.	Atomal	bständ	e in	$Ni_{31}Si_{12}$
---------	----	--------	--------	------	------------------

Atom 1	Atom 2	D(Å)	Atom 1	Atom 2	D(Å)	Atom 1	Atom 2	D(Å)
Ni(1)	3Si(5)	2.33	Ni(6)	Si(2)	2,30		Ni(4)	2,56
	6Ni(8)	2,58		Si(1)	2,39		Ni(1)	2,58
Ni(2)	Ni(2)	2,34		Si(4)	2,45	Si(1)	3Ni(7)	2,29
.,	Si(1)	2,36		Ni(2)	2,47		Ni(2)	2,36
	3Si(4)	2,42		Si(3)	2,49		3Ni(6)	2,39
	3Ni(6)	2,47		Ni(5)	2,51	Si(2)	3Ni(6)	2,30
	3Ni(5)	2,53		Ni(5)	2,53		3Ni(7)	2,40
Ni(3)	3Si(4)	2,44		Ni(8)	2,54		3Ni(8)	2,46
	Si(2)	2,50		Ni(7)	2,55		Ni(3)	2,50
	3Ni(5)	2,55	Ni(7)	Si(3)	2,26	Si(3)	3Ni(7)	2,26
Ni(4)	3Si(5)	2,32		Si(1)	2,29		3Ni(5)	2,33
	Si(3)	2,54		Si(5)	2,39		3Ni(6)	2,49
	3NÌ(8)	2.56		Si(2)	2,40		Ni(4)	2,54
	3Ni(7)	2,56		Ni(8)	2,45	Si(4)	2Ni(5)	2,31
Ni(5)	Si(4)	2,31		Ni(8)	2,51		2Ni(5)	2,42
	Si(3)	2.33		Ni(6)	2,55		2Ni(2)	2,42
	Si(4)	2,42		Ni(4)	2,56		2Ni(3)	2,44
	Ni(6)	2,51	Ni(8)	Si(5)	2,30		2Ni(6)	2,45
	Ni(6)	2,53	• •	Si(5)	2,41	Si(5)	2Ni(8)	2,30
	Ni(2)	2,53		Ni(7)	2,45		2Ni(4)	2,32
	Ni(5)	2.54		Ni(8)	2,46		Ni(1)	2,33
	Ni(3)	2.55		Si(2)	2,46		2Ni(7)	2,39
	(-)			Ni(7)	2,51		2Ni(8)	2,41
				Ni(6)	2,54			

Die	Abstände	sind	bis	D = 2,60	Å	aufgeführt
-----	----------	------	-----	----------	---	------------

lationenmodell der metallischen Phasen ansehen (Schubert, 1969).

Es ist nicht verwunderlich, dass die verwandte Phase Cu₃P, welche die Stapelfolge $ABCACB = (chc)^2$ hat (Mannsmann, 1965), den nach Schubert (1968a) zu erwartenden Wert $l_{cE}/l_{cA} = 7/6$ zulässt mit der Elektronenkorrelation $a/3 = d_{A1}$ $l_c = 3,7$ (Valenzelektronen) und $a/6 = d_{C11}$ $l_c = 7,0$ (Rumpfelektronen). Auch die Struktur des Fe₂P lässt sich hier einordnen. Um das einzusehen, vergleiche man z.B. die Phasen Pd₅As₂ (homöotyp Ni₃₁Si₁₂) a = 7,32 Å, c = 13,7 Å und Pd₂As(h) (Fe₂P Typ)a = 6,65, c = 3,58 Å; es ergibt sich als mögliche Rumpfelektronenkorrelation $a/\sqrt{12} = a_{A2}\sqrt{2} l_c = 9$ (Bälz et al., 1969). In diesem Fall gilt für Elektronenschichten parallel zur Basis, die durch eine Translation in Richtung c auseinander hervorgehen $l_{cE} = 3$, sodass sich der Wert l_{cE}/l_{cE} $l_{cA} = 1,50$ ergibt, der nach dem Modell (Schubert, 1968a) für die $AB = h^2$ Stapelung zuständig ist. – Die Struktur des Pt_2Sn_3 , welche die Stapelfolge *BCACBCBABC* = (hhchc)² hat, ordnet sich nur ein, wenn man ad hoc den stark verzerrten Ortskorrelationsvorschlag $a/3 = d_{C_{11}}$, $l_c = 12,7 \simeq 13$ macht. Für AgZn(r) hommt $a/6 = d_{C_{11}}$, $l_c = 2,55 \simeq 3$ bzw. $a/3 = d_{C_{11}}, l_c = 1,5$. – Durch das gute Passen der obigen Ortskorrelationsvorschläge wird die entscheidende Bedeutung der Rumpfelektronenkorrelation für die Bindung in Kristallen (Schubert, 1970) bestätigt.

Herr Dipl. Phys. U. Bälz war behilflich bei einigen Rechnungen. Diese konnten wir im Recheninstitut (Univ. Stuttgart) ausführen. Die Forschungsgemeinschaft unterstützte diese Arbeit durch Sachmittel. Wir möchten dafür unseren Dank aussprechen.

Literatur

- BÄLZ, U. (1969). Diplomarbeit, Univ. Stuttgart.
- BÄLZ, U. & SCHUBERT, K. (1969). J. Less-Common Metals, 19, 300.
- BURKHARDT, W. & SCHUBERT, K. (1959). Z. Metallk. 50, 196.
- BURKHARDT, K. & SCHUBERT, K. (1965). Z. Metallk. 56, 864.
- ELLNER, M., BHAN, S. & SCHUBERT, K. (1969). J. Less-Common Metals, 19, 245.
- HANSEN, M. & ANDERKO, K. (1958). Constitution of Binary Alloys. New York: McGraw-Hill.
- MANNSMANN, M. (1965). Z. Kristallogr. 122, 399.
- PILSTRÖM, G. (1961). Acta Chem. Scand. 15, 893.
- SAINI, G. S., CALVERT, L. D. & TAYLOR, J. B. (1964). Canad. J. Chem. 42, 1511.
- SCHUBERT, K. (1964). Kristallstrukturen zweikomponentiger Phasen, Berlin: Springer Verlag.
- SCHUBERT, K. (1968a). Bull. Soc. franç. Minér. Crist. 91, 575.
- SCHUBERT, K. (1968b). Helv. Phys. Acta 41, 1155.
- SCHUBERT, K. (1969). Acta Cryst. A25, S96.
- SCHUBERT, K. (1970). Acta Cryst. B26, 266.

Acta Cryst. (1971). B27, 920

Die Kristall- und Molekülstruktur von heterozyklischen Schwefelverbindungen. Röntgenstrukturanalyse von 2,2-Dimethyl-thioindoxyl-1,1-dioxid, 2,2-Dimethyl-thiochromanon-1,1-dioxid, und Homothiochromanon-1,1-dioxid

VON L. PREUSS,* W. HOPPE, S. HECHTFISCHER UND K. ZECHMEISTER

Abteilung für Röntgenstrukturforschung am Max-Planck-Institut für Eiweiss- und Lederforschung, München, und Physikalisch-Chemisches Institut der T.H. München, Deutschland

(Eingegangen am 15. April 1970 und wiedereingereicht am 22. Juli 1970)

A description is given of the structure analysis of 2,2-dimethylthioindoxyl 1,1-dioxide, of 2,2-dimethylthiochromanone 1,1-dioxide and of homothiochromanone 1,1-dioxide. The intensities of 2,2-dimethylthioindoxyl 1,1-dioxide were measured by the oscillation method and by the diffractometer. To solve the structure the convolution method was used. The crystal structure of 2,2-dimethylthiochromanon 1,1dioxide was determined by direct methods and that of homothiochromanon 1,1-dioxide by a version of the symbolic phase addition method.

Einleitung

Die Röntgenstrukturanalyse von 2,2-Dimethyl-thioindoxyl-1,1-dioxid und 2,2-Dimethyl-thiochromanon-1,1-dioxid sowie von Homothiochromanon-1,1-dioxid wurde durchgeführt, um das Ausmass und die sterische Beeinflussbarkeit der Wechselwirkung von Sulfon (-SO₂-)-Funktionen mit einem resonanzfähigen π -Elektronensystem zu untersuchen und dadurch Einblick in die Bindungsverhältnisse am Schwefel zu erhalten. Sie stehen in enger Verbindung zu spektroskopischen Untersuchungen von G. Kresze und Mitarbeitern zum

^{*} Auszug aus der Dissertation, München 1969.